Power Generation is Blowing in the Wind

January 18, 2012

By looking at the stability of the atmosphere, wind farm operators could gain greater insight into the amount of power generated at any given time.

Power generated by a wind turbine largely depends on the wind speed. In a wind farm in which the turbines experience the same wind speeds but different shapes, such as turbulence, to the wind profile, a turbine will produce different amounts of power.

This variable power can be predicted by looking at atmospheric stability, according to Lawrence Livermore National Laboratory scientist Sonia Wharton and colleague Julie Lundquist of the University of Colorado at Boulder and the National Renewable Energy Laboratory.

In a paper appearing in the Jan. 12 edition of the journal Environmental Research Letters, Wharton and Lundquist examined turbine-generated power data, segregated by atmospheric stability, to figure out the power performance at a West Coast wind farm. 

"The dependence of power on stability is clear, regardless of whether time periods are segregated by three-dimensional turbulence, turbulence intensity or wind shear," Wharton said. 

The team found that power generated at a set wind speed is higher under stable conditions and lower under strongly unsteady conditions at that location. The average wind power output difference is as high as 15 percent less wind power generation when the atmosphere is unstable.

Visit Lawrence Livermore Lab online for full press release.